Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(5): e0232349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32365070

RESUMO

A popular model for sensory processing, known as predictive coding, proposes that incoming signals are iteratively compared with top-down predictions along a hierarchical processing scheme. At each step, error signals arising from differences between actual input and prediction are forwarded and recurrently minimized by updating internal models to finally be "explained away". However, the neuronal mechanisms underlying such computations and their limitations in processing speed are largely unknown. Further, it remains unclear at which step of cortical processing prediction errors are explained away, if at all. In the present study, human subjects briefly viewed the superposition of two orthogonally oriented gratings followed by abrupt removal of one orientation after either 33 or 200 milliseconds. Instead of strictly seeing the remaining orientation, observers report rarely but highly significantly an illusory percept of the arithmetic difference between previous and actual orientations. Previous findings in cats using the identical paradigm suggest that such difference signals are inherited from first steps of visual cortical processing. In light of early modeling accounts of predictive coding, in which visual neurons were interpreted as residual error detectors signaling the difference between actual input and its temporal prediction based on past input, our data may indicate continued access to residual errors. Such strategy permits time-critical perceptual decision making across a spectrum of competing internal signals up to the highest levels of processing. Thus, the occasional appearance of a prediction error-like illusory percept may uncover maintained flexibility at perceptual decision stages when subjects cope with highly dynamic and ambiguous visual stimuli.


Assuntos
Ilusões/fisiologia , Estimulação Luminosa/instrumentação , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Orientação Espacial , Estimulação Luminosa/métodos , Adulto Jovem
2.
Proc Natl Acad Sci U S A ; 115(25): 6476-6481, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866856

RESUMO

Transcranial magnetic stimulation (TMS) has become a popular clinical method to modify cortical processing. The events underlying TMS-induced functional changes remain, however, largely unknown because current noninvasive recording methods lack spatiotemporal resolution or are incompatible with the strong TMS-associated electrical field. In particular, an answer to the question of how the relatively unspecific nature of TMS stimulation leads to specific neuronal reorganization, as well as a detailed picture of TMS-triggered reorganization of functional brain modules, is missing. Here we used real-time optical imaging in an animal experimental setting to track, at submillimeter range, TMS-induced functional changes in visual feature maps over several square millimeters of the brain's surface. We show that high-frequency TMS creates a transient cortical state with increased excitability and increased response variability, which opens a time window for enhanced plasticity. Visual stimulation (i.e., 30 min of passive exposure) with a single orientation applied during this TMS-induced permissive period led to enlarged imprinting of the chosen orientation on the visual map across visual cortex. This reorganization was stable for hours and was characterized by a systematic shift in orientation preference toward the trained orientation. Thus, TMS can noninvasively trigger a targeted large-scale remodeling of fundamentally mature functional architecture in early sensory cortex.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico/métodos , Gatos , Orientação/fisiologia , Estimulação Luminosa/métodos , Estimulação Magnética Transcraniana/métodos
3.
J Neurosci ; 36(6): 1902-13, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865614

RESUMO

Differences between visual pathways representing darks and lights have been shown to affect spatial resolution and detection timing. Both psychophysical and physiological studies suggest an underlying retinal origin with amplification in primary visual cortex (V1). Here we show that temporal asymmetries in the processing of darks and lights create motion in terms of propagating activity across V1. Exploiting the high spatiotemporal resolution of voltage-sensitive dye imaging, we captured population responses to abrupt local changes of luminance in cat V1. For stimulation we used two neighboring small squares presented on either bright or dark backgrounds. When a single square changed from dark to bright or vice versa, we found coherent population activity emerging at the respective retinal input locations. However, faster rising and decay times were obtained for the bright to dark than the dark to bright changes. When the two squares changed luminance simultaneously in opposite polarities, we detected a propagating wave front of activity that originated at the cortical location representing the darkened square and rapidly expanded toward the region representing the brightened location. Thus, simultaneous input led to sequential activation across cortical retinotopy. Importantly, this effect was independent of the squares' contrast with the background. We suggest imbalance in dark-bright processing as a driving force in the generation of wave-like activity. Such propagation may convey motion signals and influence perception of shape whenever abrupt shifts in visual objects or gaze cause counterchange of luminance at high-contrast borders. SIGNIFICANCE STATEMENT: An elementary process in vision is the detection of darks and lights through the retina via ON and OFF channels. Psychophysical and physiological studies suggest that differences between these channels affect spatial resolution and detection thresholds. Here we show that temporal asymmetries in the processing of darks and lights create motion signals across visual cortex. Using two neighboring squares, which simultaneously counterchanged luminance, we discovered propagating activity that was strictly drawn out from cortical regions representing the darkened location. Thus, a synchronous stimulus event translated into sequential wave-like brain activation. Such propagation may convey motion signals accessible in higher brain areas, whenever abrupt shifts in visual objects or gaze cause counterchange of luminance at high-contrast borders.


Assuntos
Lateralidade Funcional/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Gatos , Sensibilidades de Contraste/fisiologia , Feminino , Percepção de Forma/fisiologia , Humanos , Luz , Masculino , Percepção de Movimento/fisiologia , Estimulação Luminosa , Psicofísica , Retina/fisiologia , Vias Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...